Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jasminka Popović, ${ }^{\text {a }}$ * Draginja Mrvoš-Sermek ${ }^{\text {a }}$ and Vesna TralićKulenovićb ${ }^{\text {b }}$
${ }^{\text {a }}$ Laboratory of General and Inorganic Chemistry, Faculty of Science, University of Zagreb, UI. kralja Zvonimira 8, HR-10000 Zagreb, Croatia, and ${ }^{\mathbf{b}}$ Faculty of Textile Technology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia

Correspondence e-mail: jpopovic@chem.pmf.hr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.053$
ωR factor $=0.167$
Data-to-parameter ratio $=15.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

N,2-Dimethyl-3-furanthiocarboxanilide

The title compound, $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NOS}$, was prepared and structurally characterized. The molecule is not planar; the furan ring is inclined at an angle of 26.5° to the phenyl ring. The crystal structure is dominated by van der Waals forces.

Comment

The biological activity of N-arylfuranthiocarboxamides has been well known for years (Landquist, 1984). N-Aryl-3furanthiocarboxamides were linvestigated to a lerrer extent due to difficulties in their synthesis and unrecognized pharmaceutical importance (Dodd et al., 1970). Fungicidal and insecticidal activity of the derivatives of 3-furancarboxylic acid has encouraged the synthesis of new N-aryl-3-furanthiocarboxamide derivatives.

(I)

In order to get more information on the structural criteria that an organic molecule must fulfill to exhibit such activity, we investigated the structure of the title compound, (I) (Fig. 1).

Its antibacterial activity is currently under preliminary investigation. A survey of the Cambridge Structural Database (Allen \& Kennard, 1993) revealed only two structures involving furanthioamide, viz. N-(2-hydroxyethyl)-2-thiofuramide (FELYIE; Galešić et al., 1987) and 5-nitro-N-phenyl-2-thiofuramide (KOPGUR; Pavlović et al., 2000). The Csp ${ }^{2}=\mathrm{Csp}^{2}$ and $\mathrm{Csp}{ }^{2}-\mathrm{O}$ bond distances within the furan ring are in agreement with literature data (Allen et al., 1987). The Csp ${ }^{2}$ $\mathrm{Cs} p^{2}$ bond distance value is slightly longer than the average value of $1.432 \AA$ (Allen et al., 1987). The $\mathrm{C}=\mathrm{S}$ bond length is consistent with the average value found in the fragment $X_{2} \mathrm{C}=\mathrm{S}(X=\mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{S})$ of $1.671 \AA$, as well as in $N-(2-$ hydroxyethyl)-2-thiofuramide (Galešić et al., 1987). The $\mathrm{C}-\mathrm{N}$ distances of the thioamide moiety correspond to single $\mathrm{C}-\mathrm{N}$ bond values, while $\mathrm{N} 1-\mathrm{C} 6$ is quite shorter as a result of π electron delocalization. In the structure of N-(2-hydroxy-ethyl)-2-thiofuramide (Galešić et al., 1987), the analogous bond length is even shorter, 1.317 (4) \AA. The sum of the angle

Figure 1

PLATON drawing (Spek, 1998) with the atom-numbering scheme. The displacement ellipsoids are at the 50% probability level for the non-H atoms. H atoms are shown as spheres of arbitrary radii.
values around the thioamido N atom is $358.7(2)^{\circ}$, confirming $s p^{2}$-hybridization. The title molecule is not planar, exibiting twisting around the single $\mathrm{N} s p^{2}-\mathrm{C} s p^{2}$ bond ($\mathrm{N} 1-\mathrm{C} 6$). The measure of twisting is described by the torsion angle C3-C5-C6-N1 of -140.9 (2).

Experimental

The title compound was prepared by thionation of the corresponding amide with phosphorus pentasulfide, according to the reported procedure (Hahn et al., 1970). By recrystallization from ethanol prismatic crystals of good diffraction quality were obtained.

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{13}$ NOS
$M_{r}=231.30$
Orthorhombic, Pbca
$a=9.577$ (3) £
$b=16.039(3) \AA$
$c=16.127$ (2) \AA
$V=2477.2(10) \AA^{3}$
$Z=8$
$D_{x}=1.240 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation

Cell parameters from 33 reflections
$\theta=11.9-16.4^{\circ}$
$\mu=0.24 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, yellow
$0.34 \times 0.26 \times 0.11 \mathrm{~mm}$

Data collection

Philips PW1100 diffractometer updated by Stoe
$\theta / 2 \theta$ scans
2671 measured reflections
2671 independent reflections
1280 reflections with $I>2 \sigma(I)$
$\theta_{\text {max }}=27.0^{\circ}$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
w= & 1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0849 P)^{2}\right. \\
& +0.4315 P]
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$w R\left(F^{2}\right)=0.167$
$S=0.97$
$(\Delta / \sigma)_{\max }<0.001$
2671 reflections
174 parameters
H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\max }=0.35 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.17 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.015 (2)

Table 1
Selected geometric parameters ($\AA{ }^{\circ},{ }^{\circ}$).

C5-C6	$1.483(4)$	$\mathrm{N} 1-\mathrm{C} 8$	$1.443(3)$
$\mathrm{C} 6-\mathrm{N} 1$	$1.335(3)$	$\mathrm{N} 1-\mathrm{C} 7$	$1.468(3)$
$\mathrm{C} 6-\mathrm{S} 1$	$1.667(3)$		
$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5$	$115.5(2)$	$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 8$	$121.9(2)$
$\mathrm{N} 1-\mathrm{C} 6-\mathrm{S} 1$	$123.2(2)$	$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 7$	$121.3(2)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{S} 1$	$121.1(2)$	$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 7$	$115.4(2)$

The positions of the H atoms attached to the C atoms of the furan and phenyl ring were generated geometrically and refined using the riding model. Those belonging to the methyl groups were located in a difference Fourier map.

Data collection: STADI4 (Stoe \& Cie, 1995); cell refinement: STADI4; data reduction: X-RED (Stoe \& Cie, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1998); software used to prepare material for publication: SHELXL97.

The authors thank the Ministry of Science and Technology of the Republic of Croatia, Zagreb, for financial support (grant No. 119408).

References

Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. News, 8, 1, 31-37.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. \& Orpen, A. G. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Dodd, M. C., Stillman, W. B., Roys, M. \& Crosby, C. (1970). J. Pharmacol. Exp. Ther. 82, 11-18.
Galešić, N., Vlahov, A. \& Galešić, M. (1987). Acta Cryst. C43, 479-482.
Hahn, V., Zupanc, S. \& Jakopčić, K. (1970). Croat. Chem. Acta, 42, 585-588.
Landquist, J. K. (1984). Application as Pharmaceuticals, in Comprehensive Heterocyclic Chemistry, Vol. 1/1.06, edited by A. R. Katritzky \& C. W. Rees, pp. 531-597. Oxford: Pergamon Press.
Pavlović, G. Mance, A. D. \& Jakopčić, K. (2000). Acta Cryst. C56, 604-606.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Stoe \& Cie (1995). STADI4 and X-RED. Stoe \& Cie, Darmstadt, Germany.
Spek, L. (1998). PLATON98 for Windows. University of Utrecht, The Netherlands.

